题目
给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
示例 1:

1 2
| 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,3,6,9,8,7,4,5]
|
示例 2:

1 2
| 输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]] 输出:[1,2,3,4,8,12,11,10,9,5,6,7]
|
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
实现代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
| class Solution { public List<Integer> spiralOrder(int[][] matrix) { int rowCount = matrix.length; int columnCount = matrix[0].length; int top = 0; int right = 0; int left = rowCount - 1; int down = columnCount - 1;
List<Integer> list = new ArrayList<>(); while (list.size() < (rowCount * columnCount)) { for (int i = top; i <= down; i++) { list.add(matrix[right][i]); if (list.size() == rowCount * columnCount) { return list; } } right += 1; for (int i = right; i <= left; i++) { list.add(matrix[i][down]); if (list.size() == rowCount * columnCount) { return list; } } down -= 1; for (int i = down; i >= top; i--) { list.add(matrix[left][i]); if (list.size() == rowCount * columnCount) { return list; } } left -= 1; for (int i = left; i >= right; i--) { list.add(matrix[i][top]); if (list.size() == rowCount * columnCount) { return list; } } top += 1; } return list; } }
|
核心点
遍历线路:左上往右遍历,右上往下遍历,右下往左遍历,左下往上遍历;
当一条边遍历完之后,可以向边的反方向移动一步,两个作用:
- 向内收缩
- 避免重复遍历
如下代码
1 2 3 4 5 6 7 8 9
| for (int i = top; i <= down; i++) { list.add(matrix[right][i]); if (list.size() == rowCount * columnCount) { return list; } }
right += 1;
|
当遍历完上边之后,通过right += 1;将上边往下移,向内收缩,同时也将右边的起始遍历点往下推了一格(因为右上那个点已经在遍历上边时被遍历过了)
时间复杂度
时间组成:
假设matrix大小为n*m
总的时间:O(n*m)
空间复杂度
空间组成:
总的空间:O(n*m),不算输出空间就是O(1)